人工智能的例子和原理(人工智能原理与方法)
本篇文章给大家谈谈人工智能的例子和原理,以及人工智能原理与方法对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。
本文目录一览:
- 1、人工智能是什么意思,举个例子?
- 2、人工智能应用在哪些方面呢?能举几个典型的例子吗?
- 3、人工智能的工作原理是什么?
- 4、人工智能的原理是什么
- 5、人工智能战胜人类的例子
- 6、人工智能在生活中应用的例子
人工智能是什么意思,举个例子?
人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。
人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。人工智能从诞生以来,理论和技术日益成熟,应用领域也不断扩大,可以设想,未来人工智能带来的科技产品,将会是人类智慧的“容器”。人工智能可以对人的意识、思维的信息过程的模拟。人工智能不是人的智能,但能像人那样思考、也可能超过人的智能。
实际应用
机器视觉,指纹识别,人脸识别,视网膜识别,虹膜识别,掌纹识别,专家系统,自动规划,智能搜索,定理证明,博弈,自动程序设计,智能控制,机器人学,语言和图像理解,遗传编程等。
人工智能应用在哪些方面呢?能举几个典型的例子吗?
人工智能应用的领域非常广泛,随着人工智能的不断发展,这些都会一一实现。
1、智能制造领域。 标准化工业制造中信息感知,自主控制,系统协调,个性化定制,检查和维护以及过程优化的技术要求。
2.智能农业领域。在具有复杂应用环境和多样应用场景的农业环境中,标准化技术要求,例如特殊传感器,网络和预测数据模型,以协助农产品的生产和加工并提高农作物的产量。3.智能交通领域。 标准化交通信息数据平台和集成管理系统,从而可以对行人,车辆和道路状况等动态复杂信息进行智能处理,从而带动了智能信号灯等技术的推广。
4.智能医疗领域。 专注。疗数据,医疗诊断,医疗服务,医疗监督等方面,着重规范人工智能医疗在数据采集,数据隐身管理等方面的应用,包括医疗数据特征表示,人表达能医疗质量评估等标准。
5.智能教育领域。 规范新教学体系中与教学管理全过程有关的人工智能应用,建立以学习者为中心的教学服务,实现日常教育和终身教育的个性化。
6.智能业务领域。 主要通过复杂的应用场景来标准化商业智能领域,包括服务模型的分类和管理,业务数据的智能分析以及相应推荐引擎系统架构的设计要求
7.智能能源领域。 在能源开发利用,生产和消费的全过程中,对集成智能应用进行标准化,包括能源系统的自组织,自检,自平衡和自优化。
8.智能物流领域。 规范从计划,采购,加工,仓储和运输到物流全过程的技术和管理要求,引入智能识别,仓储,调度,跟踪,配置等方式,以提高物流效率,增强物流信息的可视性, 并优化物流配置。
9.智能金融领域。 标准化在线支付,融资信贷,投资咨询,风险管理,大数据分析和预测,数据安全性和其他应用技术,以帮助改善信贷调查,产品定价,金融资产投资研究,客户付款方式,投资咨询,客户 服务和其他服务能力。
10.智能家居领域。 标准化产品,服务和应用程序,例如智能家居硬件,智能网络,服务平台,智能软件,促进智能家居产品的互联,并有效改善智能家居在照明,监控,***,健康,教育,信息,安全, 等。用户体验。
人工智能的工作原理是什么?
人工智能的工作原理是:计算机会通过传感器(或人工输入的方式)来收集关于某个情景的事实。计算机将此信息与已存储的信息进行比较,以确定它的含义。计算机会根据收集来的信息计算各种可能的动作,然后预测哪种动作的效果最好。计算机只能解决程序允许解决的问题,不具备一般意义上的分析能力。
简介:
人工智能(Artificial Intelligence),英文缩写为AI,它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。 人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。人工智能是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能从诞生以来,理论和技术日益成熟,应用领域也不断扩大,但没有一个统一的定义。 人工智能是对人的意识、思维的信息过程的模拟。人工智能不是人的智能,但能像人那样思考、也可能超过人的智能。但是这种会自我思考的高级人工智能还需要科学理论和工程上的突破。
科学介绍:
1、实际应用
机器视觉:机器视觉,指纹识别,人脸识别,视网膜识别,虹膜识别,掌纹识别,专家系统,自动规划,智能搜索,定理证明,博弈,自动程序设计,智能控制,机器人学,语言和图像理解,遗传编程等。
2、学科范畴
人工智能是一门边沿学科,属于自然科学和社会科学的交叉。
3、涉及学科
哲学和认知科学,数学,神经生理学,心理学,计算机科学,信息论,控制论,不定性论。
4、研究范畴
自然语言处理,知识表现,智能搜索,推理,规划,机器学习,知识获取,组合调度问题,感知问题,模式识别,逻辑程序设计软计算,不精确和不确定的管理,人工生命,神经网络,复杂系统,遗传算法。
5、意识和人工智能
人工智能就其本质而言,是对人的思维的信息过程的模拟。
人工智能的原理是什么
人工智能的原理,简单的形容就是:
人工智能=数学计算。
机器的智能程度,取决于“算法”。最初,人们发现用电路的开和关,可以表示1和0。那么很多个电路组织在一起,不同的排列变化,就可以表示很多的事情,比如颜色、形状、字母。再加上逻辑元件(三极管),就形成了“输入(按开关按钮)——计算(电流通过线路)——输出(灯亮了)”
这种模式。
想象家里的双控开关。
为了实现更复杂的计算,最终变成了,“大规模集成电路”——芯片。
电路逻辑层层嵌套,层层封装之后,我们改变电流状态的方法,就变成了“编写程序语言”。程序员就是干这个的。
程序员让电脑怎么执行,它就怎么执行,整个流程都是被程序固定死的。
所以,要让电脑执行某项任务,程序员必须首先完全弄清楚任务的流程。
就拿联控电梯举例:
别小看这电梯,也挺“智能”呢。考虑一下它需要做哪些判断:上下方向、是否满员、高峰时段、停止时间是否足够、单双楼层等等,需要提前想好所有的可能性,否则就要出bug。
某种程度上说,是程序员控制了这个世界。可总是这样事必躬亲,程序员太累了,你看他们加班都熬红了眼睛。
于是就想:能不能让电脑自己学习,遇到问题自己解决呢?而我们只需要告诉它一套学习方法。
大家还记得1997年的时候,IBM用专门设计的计算机,下赢了国际象棋冠军。其实,它的办法很笨——暴力计算,术语叫“穷举”(实际上,为了节省算力,IBM人工替它修剪去了很多不必要的计算,比如那些明显的蠢棋,并针对卡斯帕罗夫的风格做了优化)。计算机把每一步棋的每一种下法全部算清楚,然后对比人类的比赛棋谱,找出最优解。
一句话:大力出奇迹!
但是到了围棋这里,没法再这样穷举了。力量再大,终有极限。围棋的可能性走法,远超宇宙中全部原子之和(已知),即使用目前最牛逼的超算,也要算几万年。在量子计算机成熟之前,电子计算机几无可能。
所以,程序员给阿尔法狗多加了一层算法:
A、先计算:哪里需要计算,哪里需要忽略。
B、然后,有针对性地计算。
——本质上,还是计算。哪有什么“感知”!
在A步,它该如何判断“哪里需要计算”呢?
这就是“人工智能”的核心问题了:“学习”的过程。
仔细想一下,人类是怎样学习的?
人类的所有认知,都来源于对观察到的现象进行总结,并根据总结的规律,预测未来。
当你见过一只四条腿、短毛、个子中等、嘴巴长、汪汪叫的动物,名之为狗,你就会把以后见到的所有类似物体,归为狗类。
不过,机器的学习方式,和人类有着质的不同:
人通过观察少数特征,就能推及多数未知。举一隅而反三隅。
机器必须观察好多好多条狗,才能知道跑来的这条,是不是狗。
这么笨的机器,能指望它来统治人类吗。
它就是仗着算力蛮干而已!力气活。
具体来讲,它“学习”的算法,术语叫“神经网络”(比较唬人)。
(特征提取器,总结对象的特征,然后把特征放进一个池子里整合,全连接神经网络输出最终结论)
它需要两个前提条件:
1、吃进大量的数据来试错,逐渐调整自己的准确度;
2、神经网络层数越多,计算越准确(有极限),需要的算力也越大。
所以,神经网络这种方法,虽然多年前就有了(那时还叫做“感知机”)。但是受限于数据量和计算力,没有发展起来。
神经网络听起来比感知机不知道高端到哪里去了!这再次告诉我们起一个好听的名字对于研(zhuang)究(bi)有多重要!
现在,这两个条件都已具备——大数据和云计算。谁拥有数据,谁才有可能做AI。
目前AI常见的应用领域:
图像识别(安防识别、指纹、美颜、图片搜索、医疗图像诊断),用的是“卷积神经网络(CNN)”,主要提取空间维度的特征,来识别图像。
自然语言处理(人机对话、翻译),用的是”循环神经网络(RNN)“,主要提取时间维度的特征。因为说话是有前后顺序的,单词出现的时间决定了语义。
神经网络算法的设计水平,决定了它对现实的刻画能力。顶级大牛吴恩达就曾经设计过高达100多层的卷积层(层数过多容易出现过拟合问题)。
当我们深入理解了计算的涵义:有明确的数学规律。那么,
这个世界是是有量子(随机)特征的,就决定了计算机的理论局限性。——事实上,计算机连真正的随机数都产生不了。
——机器仍然是笨笨的。
更多神佑深度的人工智能知识,想要了解,可以私信询问。
人工智能战胜人类的例子
科幻电影里不少,现实中也就AlphaGo在围棋中的应用了吧。
阿尔法围棋(AlphaGo)是第一个击败人类职业围棋选手、第一个战胜围棋世界冠军的人工智能机器人,由谷歌(Google)旗下DeepMind公司戴密斯·哈萨比斯领衔的团队开发。其主要工作原理是“深度学习”。
2016年3月,阿尔法围棋与围棋世界冠军、职业九段棋手李世石进行围棋人机大战,以4比1的总比分获胜;2016年末2017年初,该程序在中国棋类网站上以“大师”(Master)为注册账号与中日韩数十位围棋高手进行快棋对决,连续60局无一败绩;2017年5月,在中国乌镇围棋峰会上,它与排名世界第一的世界围棋冠军柯洁对战,以3比0的总比分获胜。围棋界公认阿尔法围棋的棋力已经超过人类职业围棋顶尖水平,在GoRatings网站公布的世界职业围棋排名中,其等级分曾超过排名人类第一的棋手柯洁。
2017年5月27日,在柯洁与阿尔法围棋的人机大战之后,阿尔法围棋团队宣布阿尔法围棋将不再参加围棋比赛。2017年10月18日,DeepMind团队公布了最强版阿尔法围棋,代号AlphaGo Zero。
人工智能在生活中应用的例子
1、虚拟个人助理
Siri,GoogleNow和Cortana都是各种渠道(iOS,Android和WindowsMobile)上的智能数字个人助理。
总归,当你用你的声响提出要求时,他们会协助你找到有用的信息;你能够说“最近的我国饭馆在哪里?”,“今日我的日程安排是什么?”,“提醒我八点打电话给杰里”,帮手会经过查找信息,转播手机中的信息或发送指令给其他应用程序。
人工智能在这些应用程序中十分重要,由于他们搜集有关恳求的信息并运用该信息更好地辨认您的言语并为您供给适合您偏好的结果。
微软标明Cortana“不断了解它的用户”,而且终究会开展出猜测用户需求的能力。虚拟个人助理处理来自各种来历的许多数据以了解用户,并更有效地协助他们组织和跟踪他们的信息。
2、视频游戏
事实上,自从第一次电子游戏以来,视频游戏AI现已被运用了很长一段时间-人工智能的一个实例,大多数人可能都很熟悉。
可是AI的复杂性和有效性在曩昔几十年中呈指数级添加,导致视频游戏人物了解您的行为,呼应刺激并以不行预知的方法做出反应。2014年的中心地球:魔多之影关于每个非玩家人物的个性特征,他们对曩昔互动的回想以及他们的可变方针都特别有目共睹。
“孤岛惊魂”和“使命呼唤”等第一人称射击游戏或许多运用人工智能,敌人能够剖析其环境,找到可能有利于其生存的物体或举动;他们会采纳保护,查询声响,运用侧翼演习,并与其他AI进行沟通,以添加取胜的时机。
就AI而言,视频游戏有点简略,但由于职业巨大的商场,每年都在投入许多精力和资金来完善这种类型的AI。
3、在线客服
现在,许多网站都提供用户与客服在线聊天的窗口,但其实并不是每个网站都有一个真人提供实时服务。在很多情况下,和你对话的仅仅只是一个初级AI。大多聊天机器人无异于自动应答器,但是其中一些能够从网站里学习知识,在用户有需求时将其呈现在用户面前。
最有趣也最困难的是,这些聊天机器人必须擅于理解自然语言。显然,与人沟通的方式和与电脑沟通的方式截然不同。所以这项技术十分依赖自然语言处理(NLP)技术,一旦这些机器人能够理解不同的语言表达方式中所包含的实际目的,那么很大程度上就可以用于代替人工服务。
4、购买预测
如果京东、天猫和亚马逊这样的大型零售商能够提前预见到客户的需求,那么收入一定有大幅度的增加。亚马逊目前正在研究这样一个的预期运输项目:在你下单之前就将商品运到送货车上,这样当你下单的时候甚至可以在几分钟内收到商品。
毫无疑问这项技术需要人工智能来参与,需要对每一位用户的地址、购买偏好、愿望清单等等数据进行深层次的分析之后才能够得出可靠性较高的结果。
虽然这项技术尚未实现,不过也表现了一种增加销量的思路,并且衍生了许多别的做法,包括送特定类型的优惠券、特殊的打折计划、有针对性的广告,在顾客住处附近的仓库存放他们可能购买的产品。
这种人工智能应用颇具争议性,毕竟使用预测分析存在隐私违规的嫌疑,许多人对此颇感忧虑。
5、音乐和电影推荐服务
与其他人工智能系统相比,这种服务比较简单。但是,这项技术会大幅度提高生活品质的改善。如果你用过网易云音乐这款产品,一定会惊叹于私人FM和每日音乐推荐与你喜欢的歌曲的契合度。
从前,想要听点好听的新歌很难,要么是从喜欢的歌手里找,要么是从朋友的歌单里去淘,但是往往未必有效。喜欢一个人的一首歌不代表喜欢这个人的所有歌,另外有的时候我们自己也不知道为什么会喜欢一首歌、讨厌一首歌。
而在有人工智能的介入之后,这一问题就有了解决办法。也许你自己不知道到底喜欢包含哪些元素的歌曲,但是人工智能通过分析你喜欢的音乐可以找到其中的共性,并且可以从庞大的歌曲库中筛选出来你所喜欢的部分,这比最资深的音乐人都要强大。
电影推荐也是相同的原理,对你过去喜欢的影片了解越多,就越了解你的偏好,从而推荐出你真正喜欢的电影。
扩展资料
人工智能应用领域
机器翻译,智能控制,专家系统,机器人学,语言和图像理解,遗传编程机器人工厂,自动程序设计,航天应用,庞大的信息处理,储存与管理,执行化合生命体无法执行的或复杂或规模庞大的任务等等。
值得一提的是,机器翻译是人工智能的重要分支和最先应用领域。不过就已有的机译成就来看,机译系统的译文质量离终极目标仍相差甚远;而机译质量是机译系统成败的关键。
中国数学家、语言学家周海中教授曾在论文《机器翻译五十年》中指出:要提高机译的质量,首先要解决的是语言本身问题而不是程序设计问题;单靠若干程序来做机译系统,肯定是无法提高机译质量的。
另外在人类尚未明了大脑是如何进行语言的模糊识别和逻辑判断的情况下,机译要想达到“信、达、雅”的程度是不可能的。智能家居之后,人工智能成为家电业的新风口,而长虹正成为将这一浪潮掀起的首个家电巨头。
长虹发布两款CHiQ智能电视新品,主打手机遥控器、带走看、随时看、分类看功能 。
参考资料 百度百科-人工智能
人工智能的例子和原理的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于人工智能原理与方法、人工智能的例子和原理的信息别忘了在本站进行查找喔。